

AACR 2024_New therapeutics targets in Breast cancer

국가신약개발사업단 기획팀 박영숙 연구원

Overview

미국암연구학회(AACR 2024)가 현지시간으로 4월 5일부터 10일까지 미국 샌디에고에서 개최되었다. AACR은 전 세계 암 연구자들이 모여 최신 연구 결과를 공유하는 가장 권위 있는 학술대회이다. 올해 78개국 각지에서 8,000명 이상의 참석자들로 행사 역사상 최대규모를 기록했다. 7,200개 이상의 초록, 50개 이상의 주요 심포지움과 300 여개의 포스터세션으로 진행되었다.

이번 연구현황 소개에서는 초록의 "new target", "novel target" 을 중점적으로 혁신적인 연구 성과를 살펴보고자 하였고, 총 44개의 molecular target 을 도출하였다. 특히 올해 가장 큰 혁신을 보인 breast cancer New target에 대해 더 자세히 다루고자 한다.

New targets by cancer indication

New target의 적응증은 Solid tumor에 집중되어 있었고, 유방암, 뇌암, 전립선암, 대장암 및 췌장암을 포함하여 치료가 어렵고 치료제가 시급한 적응증 위주로 성과를 나타냈다. MoA(Mode of action)는 총 10가지로 분류할 수 있었다. Cell growth and migration 분야가 9개로 가장 많은 new target을 발굴하였고, Stress/damage response 7개, Immune modulator 6개, Gene control 5개, Epigenetic 4개, Extracellular matrix/signaling 4개, Cell division 3개, Lipid metabolism 3개, Hormone signaling 2개, Nucleic acid synthesis 1개 순이다. Immune modulator 분야에서 6개의 new target 발굴로 관심이 지속되고 있다는 것을 알 수 있었다. Indication을 기준으로 New therapeutic target 내역은 아래와 같다.

<표 1. AACR 2024 Indication 별 New therapeutic targets 내역>

Indication	Molecular target (MoA)	Abstract No.	
Breast cancer	SCUBE3, BACH1, LIG1, xCT, CCN5, VGLL1, NCAPG, ZEB1, DAX-1, PELP1	(*표2 참고)	
Brain	CSPG4, TRIM11 (Cell growth and migration), LONP1 (Stress/damage response) YXB1 (Gene control), P4HA1 (Extracellular matrix/signaling)	#4494, #5959, #4731 #561, #4139	
Lung	PGRN (Cell growth and migration), P4HA1 (Extracellular matrix/signaling), DHX36 (Cell division)	#1864, #4139, #2749	
Prostate	H19 (Gene control), Neurolysin (Extracellular matrix/signaling), SREBP (Lipid metabolism)	#2769, #2007, #2077	
Gastric	KDM2A (Epigenetic)	#1730	
Colorectal	WNT2B (Cell growth and migration), UBE2R2 (Extracellular matrix/signaling)	#6953, #306	

Head and neck	TRIM16 (Immune modulators)	#6803 #259, #3351, #5795 #7089	
Leukemia	NHE1 (Cell growth and migration), EVI1 (Gene control), KAT2A, KAT2B (Epigenetic), PHGDH (Nucleic acid synthesis)		
Liver	ASH2L (Epigenetic), INPP5B (Lipid metabolism)	#577, #4468	
Ovarian	BARD1 (Cell growth and migration), RBM39 (Gene control), HSPG2 (Extracellular matrix/signaling)	#7549, #7133, #5090	
Pancreatic	CCN1 (Cell growth and migration), MTH1 (Stress/damage response)	#1667, #2967	
Endometrial	DDX3X (Stress/damage response)	#559	
Oral	SIRT6 (Stress/damage response)	#2451	
Melanoma	MZB1, PAEP (Immune modulators)	#3258, #5524	
Solid tumors	CNTN4 (Immune modulators)	#740	
Neuroendocrine	DUSP6 (Cell growth and migration)	#5953	
Epithelial Cancer	NUMA (Cell division)	#1642	
Renal cancer	SLAMF9 (Immune modulators)	#1371	

TNBC attracts target innovation

발표된 New target 중 유방암 적응증을 가진 target 은 총 10 건이었다. 그 중 절반 이상인 6 건이 TNBC(triple-negative breast cancer)로, estrogen receptor, progesterone receptor, HER2(normal human epidermal growth factor receptor type2)가 발현되지 않는 breast cancer 이다. TNBC 는 내분비 및 표적 분자 치료법으로 치료하기 어려운 암이다. 일차 치료법인 수술과 전신화학요법 이외 재발이나 전이에는 효과적인 치료법이 없는 상황이다. 따라서 지속적으로 새로운 표적과 치료법을 찾는 것에 연구 초점이 맞춰져 있다.

이번에 발표된 Breast cancer의 new target은 Cell growth and migration 부터 DNA damage response에 이르기까지 다양한 치료 기전에서 두각을 나타내고 있다. Stress, Hypoxia 및 DNA damage 관련된 target 발굴은 암세포 기저의 생물학적 이해의 중요성을 나타낸다. 또한, 세포 분열 및 지질 대사와 관련된 새로운 target 발굴은 breast cancer 치료전략의 변화 도모를 엿볼 수 있다.

<표 2. AACR 2024 Breast cancer New therapeutic targets 내역>

No.	MoA (mode of action)	Molecular Target	Related mechanism	Indication	Abstract No.
1	Cell growth and migration	SCUBE3	MAPK/DNA damage surveillance/apoptotic pathway	TNBC	5892
2	Stress/damage response	BACH1	Hypoxia and stress	TNBC	386
3	Stress/damage response	LIG1	DNA nick repair, PARylation	BRCA-mt cancer	3363

4	Stress/damage response	хСТ	cystine/glutamate exchanger, redox homeostasis	TNBC	5962
5	Immune modulators	CCN5	PD-L1 related immune checkpoint	TNBC	1399
6	Gene control	VGLL1	PI3K/AKT/β-catenin pathway	breast cancer	5963
7	Cell division	NCAPG	HIF-1α protein stability	TNBC	2789
8	Lipid metabolism	ZEB1	cancer-associated adipocytes (CAAs) lipolysis	Breast cancer	4434
9	Hormone signaling	DAX-1	miRNAs 29c, 199a, and 424	Breast cancer	5687
10	Hormone signaling	PELP1	combination with topoisomerase inhibitors	TNBC	2099

<문의>

국가신약개발사업단 기획팀 박영숙 연구원(yspark@kddf.org)

Reference

AACR (https://www.aacr.org/) / BIOCENTURY (https://www.biocentury.com/home)